### **Optical Identification of the Black-Widow M71A and the Dynamical Status of its Host GC**



Star Clusters as Cosmic Laboratories for Astrophysics, Dynamics and Fundamental Physics – MODEST 16 April 18-22 2016, Bologna (Italy)

### **Eclipsing Millisecond Pulsars**

- Periodical Eclipses of the Radio Signal
- Orbital Periods Usually Shorter Than 1 Day
- No Orbital Eccentricity  $\rightarrow$  Tidal Circularization
- X-ray and γ-ray Counterparts





www.cosmic-lab.eu



### **Eclipsing Millisecond Pulsars**

- Periodical Eclipses of the Radio Signal
- Orbital Periods Usually Shorter Than 1 Day
- No Orbital Eccentricity  $\rightarrow$  Tidal Circularization
- X-ray and γ-ray Counterparts







### **Eclipsing Millisecond Pulsars**

- Periodical Eclipses of the Radio Signal
- Orbital Periods Usually Shorter Than 1 Day
- No Orbital Eccentricity  $\rightarrow$  Tidal Circularization
- X-ray and γ-ray Counterparts







### PSR J1953+1846A (M71A)



Short Orbital Period of ~4 hours. No orbital eccentricity.



Eclipses for about 20% of the orbital period during the PSR superior conjunction.



Companion mass of ~0.03 Msun.



X-ray counterpart. Non thermal emission likely due to an intrabinary shock.



Hessels et al., 07 Elsner et al., 08 Cadelano et al., 15a

# We identified the optical counterpart by using deep observation obtained with the ACS@HST



































#### **COM-M71A light curve**



Cadelano et al., 2015a





#### **COM-M71A light curve**



#### **CMD** Position







#### **Reprocessing efficiency and RL filling factor**









#### **Reprocessing efficiency and RL filling factor**



**Cosmic-Lab** 





#### M71A vs M5C



Pallanca et al., 14 ; Cadelano et al. 15a





#### M71A vs 47TucW



Irradiation not only on Black Widow companions but also in some Redbacks!

Cadelano et al. 15b, see also Edmonds et al. 02







There is a wealth of exotic objects inside M71

M71A

### The X-ray source population in M71



Elsner et al., 08 ; Huang et al., 10





### The collisional parameter $\Gamma \propto \rho_0^{1.5} r_c^2$



#### M71 structural parameters

| Param.                               | OLD   | NEW    |
|--------------------------------------|-------|--------|
| W <sub>0</sub>                       | 5.5   | 6.2    |
| R <sub>c</sub>                       | 38"   | 59"    |
| R <sub>h</sub>                       | 100'' | 174"   |
| R <sub>t</sub>                       | 534"  | 1280'' |
| С                                    | 1.15  | 1.3    |
|                                      |       |        |
| $\Gamma_{NEW} \approx 2\Gamma_{OLD}$ |       |        |

#### Cadelano et al., to be submitted





### The X-ray source population in M71







#### **The Cluster Absolute Proper Motion**



We used two ACS datasets, separated by a temporal baseline of 7 years to derive the stellar proper motions.

Then we used background galaxies to determine the cluster absolute proper motion:

$$(\mu_{\alpha}\cos\delta,\mu_{\delta}) = (-2.8 \pm 0.5, -2.3 \pm 0.4)$$
 mas yr<sup>-1</sup>

In a Cartesian Galactocentric frame rest, this corresponds to:

$$(V_X, V_Y, V_Z) = (54 \pm 10, 203 \pm 6, 32 \pm 12) \text{ km s}^{-1}$$

Cadelano et al., to be submitted





#### **The Cluster Orbit**

Starting from the current M71 position and 3D, we used a three-component Galactic potential to reconstruct the cluster orbit within the Galaxy.





#### **The Cluster Orbit**

Starting from the current M71 position and 3D, we used a three-component Galactic potential to reconstruct the cluster orbit within the Galaxy.



Current Position

Cadelano et al., to be submitted





#### **The Cluster Orbit**

Starting from the current M71 position and 3D, we used a three-component Galactic potential to reconstruct the cluster orbit within the Galaxy.







#### **The Cluster Initial Mass**



Following Lamers et al., 15, we estimated the cluster initial mass.

For every reasonable value of t0, the cluster initial mass is at least:

$$M_{ini} \sim 10^5 M_{SUN}$$

which is the typical mass value measured for halo GCs.

Cadelano et al., to be submitted







### The X-ray source population in M71







## Thanks for your kind attention!



