

SEXTEN CENTER FOR ASTROPHYSICS

First evidence of fully spatially mixed first and second generation in GCs

Emanuele Dalessandro

Physics & Astronomy Department – University of Bologna (Italy)

- ◆5-year project
- ★ Advanced Research Grant funded by the European Research Council (ERC)
- → PI: Francesco R. Ferraro (Dip. of Physics & Astronomy Bologna University)
- **★** AIM: to understand the complex interplay between dynamics & stellar evolution
- → HOW: using globular clusters as cosmic laboratories and

Blue Straggler Stars
Millisecond Pulsars
Intermediate-mass Black Holes

as probe-particles

The radial distribution of MPs

The MP radial distributions are useful tools to understand the dynamical evolution of MPs and constrain their formation models

The radial distribution of MPs

In ALL clusters observed so far SG stars have been found to be more centrally concentrated than FG

The case of NGC 6362

We covered the entire cluster extension by using multi-epoch ACS and WFC3@HST and WFI@ESO data in NUV and optical filters.

a) Proper Motion cleaned sample

b) Differential reddening corrected

Multiple Populations in NGC 6362

Dalessandro et al. (2014), ApJL accepted

Multiple Populations in NGC 6362

The same behavior is observed in any filter combination and in the external WFI sample

The radial distribution of MPs in NGC 6362

Dalessandro et al. (2014), ApJL accepted

- the K-S test gives low probabilities that
 FG and SG are not extracted from the
 same parent population
- (N_{SG}/N_{FG}) shows a flat radial distribution at ~1.2

This is the first evidence ever collected of fully spatially mixed FG and SG

NGC 6362 is a unique case: what about theory?

Complete mixing is expected by theoretical models

According to N-body simulations:

- #1. Complete mixing can occur in advanced dynamical stages (with timescales depending on the SG initial concentration)
- #2. Complete mixing can occur for clusters that lost at least the 60-70% of their mass during the long-term dynamical evolution (see however Larsen et al. 2014)

erc

#1: the dynamical state of NGC 6362

From the best-fit to the density profile we obtain

$$r_h \sim 150" (5.6 pc)$$

which yields t_{rh}~1.7Gyr

$$t_{rh}/t_{age}^{\sim} 0.15$$

These values are fully compatible with those observed for other clusters with MPs radial trends

NGC 6362 should have experienced a more complicated dynamical history

NGC 6362 is a unique case: what about theory?

Vesperini et al. (2013)

Theoretical models predict that:

- #1. Complete mixing can occur in advanced dynamical stages (with timescales depending on the SG initial concentration)
- #2. Complete mixing can occur for clusters that lost at least the 60-70% of their mass during the long-term dynamical evolution

(see however Larsen et al. 2014)

#2: Observational evidence for a large mass loss

A short tidal destruction time (<10 Gyr) has been estimated for this system (Allen et al. 2006)

A very shallow PDMF can be indicative of large fraction of mass lost due to tidal effects (Vesperini & Heggie 1997; Webb et al. 2014)

It is likely that NGC 6362 lost up to 80% of its original mass thus reaching a totally mixed configuration

The mass of NGC 6362

Dalessandro et al. (2014), in preparation

$$M_{PD} = (5.3 \pm 1.5) \times 10^4 M_{sun}$$

NGC 6362 is the least massive cluster where MPs have been detected so far

This is 2-3 times smaller than M 4 or NGC 288

The original mass should be fixed at

$$M_{initial} \approx (1 - 2 \times 10^5) M_{sun}$$

Constrain to the conditions for the onset of light-elements self-enrichment

Summary

- ✓ NGC 6362 is the first GC where totally spatially mixed MPs have been observed so far
- ✓ NGC 6362 might be the least massive GC hosting MPs
- ✓ Observational evidence and theoretical expectations show that NGC 6362 should have lost up to 80% of its original mass

What's next?

We are conducting an observational campaign ESO Prop: <u>093.D-0618(A)</u>; PI: Dalessandro

- Characterize chemical patterns
- 2. Kinematical studies of NGC6362 and its surroundings

Thank you!

Visit our web-site: www.cosmic-lab.eu

