MODEST 15-S

Kobe, Japan, Dec 7-11, 2015

Clocks and Scales to understand the physics of BSS

FRANCESCO R. FERRARO

Physics & Astronomy Department – University of Bologna (Italy)

Kobe, Japan, December 8, 2015

+5-year project (web site at www.cosmic-lab.eu)

- Advanced Research Grant funded by the European Research Council (ERC)
- ✦ PI: Francesco R. Ferraro (Dip. of Physics & Astronomy Bologna University)

✦ AIM: to understand the complex interplay between dynamics & stellar evolution

+ HOW: using **globular clusters** as cosmic laboratories and

Blue Straggler Stars Millisecond Pulsars

as probe-particles

Intermediate-mass Black Holes

GCs are the only stellar systems able to undergo nearly all the physical processes known in stellar dynamics over a time scale significantly shorter than the Hubble time.

This dynamical activity can generate exotica

Today I'll talk about CLOCKS and SCALES in the context of understanding the physics of Blue Straggler Stars in GCs

The luminosity/mass at the TO level sets the CHRONOLOGICAL AGE of a Stellar Population (SP)...

but stellar systems with the same chronological age can have reached quite different stages of dynamical evolution (they have different DYNAMICAL AGE)

In order to properly characterize a SP we need to know both: the CHRONOLOGICAL & the DYNAMICAL ages

Blue Straggler Stars (BSS)

A PECULIAR stellar population

stars brighter and bluer (hotter) than the cluster MS-TO, along an extension of the main sequence

Their existence CANNOT be interpreted in terms of the evolution of a "normal" single star

Blue Straggler Stars (BSS)

The formation mechanisms

COLLISIONS

MASS-TRANSFER

depend on collision rate (Hills & Day 1976)

depend on **binary fraction + dynamical interactions** and stellar evolution (McCrea 1964)

Blue Straggler Stars (BSS)

BSS are heavy stars (M_{BSS} = 1.2-1.4 M_{\odot}) orbiting a "sea" of "normal" light stars ($M_{mean} = 0.4 M_{\odot}$): they are subject to dynamical friction that progressively makes them sink toward the cluster center

The **df** time-scale depends on:

(1) Star mass (2) Local cluster density

Because of this, **df** is expected to affect, first, the most internal BSS and then BSS progressively at larger and larger distances, as function of time

High-res: HST/WFPC2+ACS

GO11975 - PI:Ferraro 177 orbits GO12516 - PI:Ferraro 21 orbits

Grandtotal 239 orbits

THE BSS RADIAL DISTRIBUTION

THE BSS RADIAL DISTRIBUTION

BSS radial distribution

Over the last 15 years we studied the BSS radial distribution over the entire cluster extensions in 25 stellar systems. Finding a variety of cases

Ferraro et al (2012, Nature, 492, 393)

Family I : FLAT BSS radial distribution

Family I: the dynamically YOUNG clusters

Ferraro et al (2012, Nature, 492, 393)

Family II: bimodal BSS radial distribution

The BSS distribution is **bimodal** but the minimum is found at different distances from the cluster center

> df is effective in segregating BSS, starting from those at shorter distances from the cluster center

The action of **df** extends progressively at larger distances from the cluster center = the minimum is moving progressively outward

Family II: the dynamically INTERMEDIATE-age clusters

Ferraro et al (2012, Nature, 492, 393)

Family III: unimodal BSS radial distribution

Family III: the dynamically OLD clusters

Ferraro et al (2012,Nature,492,393)

The cartoon illustrates the action of **df** that progressively segregates the BSS toward the cluster center producing a dip in the radial distribution that propagates toward the external region as a function of the time.

Ferraro et al (2012,Nature,492,393)

The cartoon illustrates the action of **df** that progressively segregates the BSS toward the cluster center producing a dip in the radial distribution that propagates toward the external region as a function of the time.

Ferraro et al (2012,Nature,492,393)

As the engine of a chronometer advances a clock-hand to measure the flow of time, in a similar way dynamical friction moves the minimum outward measuring the dynamical age of a stellar system

The position of the minimum is **THE HAND** of the **DYNAMICAL CLOCK**

THE DYNAMICAL CLOCK

<mark>yo</mark>ung

As their normal sisters, BSS are expected to evolve outside the MS and to experience all the post-MS evolutionary phases.

However, while BSS are easily identifiable during the MS stage, E-BSS turns out to be photometrically indistinguishable from the other genuine low-mass stars in the post-MS phases. This is the reason why, in spite of the long search, clear-cut identifications of E-BSS are still lacking in GCs.

The only EBSS candidate in GCs with an estimated mass is the anomalous Cepheid V19 in NGC5466 (Zinn & Dahn, 1976) with an estimated mass of 1.6 M_{\odot} (Zinn & King 1982)

Both observational and theoretical arguments suggest that a **region** located in the CMD between the HB level and the AGB clump is the best place where E-BSS can be identified

Ferraro et al (2015,arXiv:1512.00649)

Indeed E-BSS appear photometrically indistinguishable from genuine low-mass cluster stars. Hence a tool evidencing their different mass is needed: a "stellar scale".

Ferraro et al (2015,arXiv:1512.00649)

Generally chemical abundances are derived from a combination of neutral and single-ionized absorption lines. However, while abundances obtained from neutral lines are independent of the adopted gravity, the **abundances from ionized absorption lines are quite sensitive to gravity** (mass).

Ferraro et al (2015,arXiv:1512.00649)

Hence the BALANCE between the chemical abundances derived from **neutral** and **ionized** absorption lines can be used to determine the correct gravity of the star (hence its MASS !!).

The pointer of such a SCALE is the quantity Δ [Fe/H] = [FeII/H]-[FeI/H]. When the pointer indicates Δ [Fe/H] = 0, then the assumed gravity (mass) is correct

Ferraro et al (2015,arXiv:1512.00649)

selected in the red box.

Ferraro et al (2015,arXiv:1512.00649)

Which is the nature of the star E-BSS1?

According to its position on the CMD and to the estimated temperature (T = 5000K) and gravity (logg = 2.5 dex), it is probably an **evolved Blue Straggler Star caught during its He-burning phase.**

This identification opens the possibility to start a systematic search of E-BSS in GCs and to determine their chemical/kinematic properties.

BSS are crucial and powerful gravitational test particles. EBSS are now distinguishable from low-mass sisters

BSS properties (in terms of radial distribution, photometry, etc) trace the past history of the parent clusters
E-BSS can keep memory of their formation mechanism offering us an alternative route to understand the BSS origin...

Star Clusters as Cosmic Laboratories for Astrophysics, Dynamics and Fundamental Physics - MODEST 16 April 18-22 2016, Bologna (Italy)

TOPICS: Blue Stragglers Stars Milli-second pulsars (Intermediate-mass) Black Holes GC dynamics

Registrations are now open at the web page: http://www.cosmic-lab.eu/Cosmic-Lab/The_Conference.html

You can download this presentation from our web-site: http://www.cosmic-lab.eu/Cosmic-Lab/Presentations.html

