Probing the dynamical evolution of stellar aggregates with Blue Straggler Stars

Barbara Lanzoni

Physics & Astronomy Department – University of Bologna (Italy)

> IAU XXVIII General Assembly – SpS1 Beijing – August 21, 2012

- ✤ 5-year project
- funded by the European Research Council (ERC)
- PI: Francesco R. Ferraro (Dip. of Astronomy Bologna Univ.)
- AIM: to understand the complex interplay between dynamics & stellar evolution
- + HOW: using **globular clusters** as cosmic laboratories and

Blue Straggler Stars Millisecond Pulsars Intermediate-mass Black Holes

as probe-particles

Why BSS?

collisional BSS

mass-transfer BSS

BSS: crucial probes of stellar evolution & stellar dynamics

BSS radial distribution

BSS radial distribution

the BSS radial distribution

probes the degree of mass-segregation and the efficiency of dynamical friction

• Post-core collapse (PCC) cluster

power-law central cusp:

- scale: $r_{cusp} = 5" = 0.2 \text{ pc}$
- slope: α = -0.5

M30 (NGC 7099)

Dataset: HST/WFPC2 + HST/ACS + NTT + MegaCam/CFHT

HST/WPC2 dataset (1999, GO7379)

- 22 images in filter F814W (I)
- 22 images in filter F555W (V)

photometric error ≤ 0.01 mag both in color and magnitude at the BSS level

centrally segregated:

- BSS more centrally concentrated than SGB & HB stars (> 4 σ significance level)
- red-BSS more concentrated than blue-BSS (~ 1.5 σ significance level)

different formation mechanism for red- and blue-BSS?

Evolutionary models of COL-BSS (Sills et al. 2009):

• collisions between two MS stars (0.4 - 0.8 $M_{\odot})$

- $Z = 10^{-4} (Z_{M30} = 2.5 \ 10^{-4})$
- blue-BSS sequence well reproduced by collisional isochrones of 1-2 Gyr
- red-BSS sequence too red to be reproduced by collisional isochrones of any age

Binary evolution models (Tian et al. 2006)

dots: simulated mass-transfer binaries (donor: 0.1-2.0 M_{\odot} , accretor: 0.1 M_{\odot} - M_{donor}) **crosses** : observed BSS in M67 (Deng et al. 1999)

Single star isochrones of $Z = 2 \ 10^{-4}$ (Cariulo et al. 2004):

Single star isochrones of $Z = 2 \ 10^{-4}$ (Cariulo et al. 2004):

BSS double sequences probe & date the cluster core-collapse event

M30 (Ferraro et al. 2009)

BSS double sequences probe & date the cluster core-collapse event

NGC 6397 (Contreras Ramos et al. 2012, in preparation)

BSS double sequences probe & date the cluster core-collapse event

Visit our web-site: www.cosmic-lab.eu

The End

