

Probing the dynamical evolution of stellar aggregates with BSS radial distribution

Barbara Lanzoni

Physics & Astronomy Department – University of Bologna

(Italy)

- ✤ 5-year project
- funded by the European Research Council (ERC)
- + PI: Francesco R. Ferraro (Dip. of Physics & Astronomy Bologna Univ.)
- + AIM: to understand the complex interplay between dynamics & stellar evolution
- + HOW: using **globular clusters** as cosmic laboratories and

Blue Straggler Stars Millisecond Pulsars Intermediate-mass Black Holes

as probe-particles

BSS as dynamical probes: why?

1)

COLLISIONAL BSS

MASS-TRANSFER BSS

depend on **collision** rate

depend on shrinking of binaries due to **dynamical interactions** (and stellar evolution)

BSS as dynamical probes: why?

- BSS (both COL- & MT-) **more mass**ive than the average
- progenitors of MT-BSS (binaries)
 more massive than the average

suffer from the effects of dynamical friction

BSS as dynamical probes: why?

BSS: crucial probes of stellar dynamics

BSS RADIAL DISTRIBUTION as dynamical probe: why?

BSS at all radial distances provide information on dynamical processes

BSS RADIAL DISTRIBUTION: METHODOLOGY

✓ central regions (high-density): high-resolution (UV + optical)

HST (WFPC2, ACS, WFC3)

✓ external regions (large extension): wide-field capabilities

Cosmic-Lab

- optical: ground-based (ESO-WFI, Megacam)
- UV: GALEX

large & complete samples of resolved stars all over the entire cluster extension

Centre & density profile from resolved star counts

gravity centre: average of star positions (+ weighted by local density)
 ... instead of luminosity centre (bias from a few bright stars)

✓ **density profile:** star counts in concentric annuli

... instead of surface brightness profile (bias from a few bright stars)

King/Wilson (+IMBH) density & velocity dispersion profiles generator freely available at: www.cosmic-lab.eu/Cosmic-Lab/Products.html

Home The team Papers Telescope time Press Releases Products Presentations

Applications/data-bases/tools developed under the Project and made available to the scientific community

King/Wilson radial profile generator

This application builds single-mass and isotropic King (1966) and Wilson (1976) models, which are commonly considered to properly represent globular clusters. Once a value of the W_0 shape parameter is selected, various structural and morphological parameters, and the projected surface density profile of the corresponding model are immediately visualized. Scale-free radial profiles of the volume density, surface density, and line-of-sight velocity dispersion can be downloaded. The user can also include a central intermediate-mass black hole, according to the self-consistent model generalization of Miocchi (2007, MNRAS 381, 103); in this case the ratio between the black hole and the cluster mass has to be also selected by the user.

M5 (NGC5904)

BSS selection

BSS selection

BSS selection

M5 (NGC5904)

BSS radial distribution

cumulative radial distribution

M5 (NGC5904)

BSS radial distribution

Specific frequency

Doubled normalized ratio

Doubled normalized ratio

www.cosmic-lab.eu

Doubled normalized ratio

Cosmic-Lab

www.cosmic-lab.eu

Results (1)

Results (2)

What do we learn about cluster dynamics?

(1)

- BSS more massive than average (\rightarrow dynamical friction)
- flat BSS radial distribution in 3 cases

wCen, Pal14, NGC2419 are not mass-segregated yet

(even in the central regions)

 $\begin{pmatrix} \omega \text{Cen:} & t_{rc} \sim t_{AGE} \\ \text{Pal14:} & t_{rc} \sim 20 \text{ Gyr} \\ \text{NGC2419:} & t_{rc} \sim 18 \text{Gyr} \end{pmatrix}$

What do we learn about cluster dynamics?

Monte-Carlo simulations of BSS evolution (Sigurdsson & Phinney 1995):

Background cluster:

multi-mass King model that best fits the observed profile

<u>Two populations of BSS:</u>

"COL-BSS": generated within r_c , with natal kick velocity "MT-BSS": generated from primordial binaries at r >> r_c , with no natal kick

Dynamical evolution due to:

dynamical friction and distant encounters

Monte-Carlo simulations of BSS evolution

Monte-Carlo simulations of BSS evolution

Monte-Carlo simulations of BSS evolution

Radius of avoidance

r_{avoid} = radius within which all stars of M~ M_{BSS} have sunk into the cluster centre in a time comparable to the cluster age because of dynamical friction:

$$t_{df}(r_{avoid}) = \frac{3 \sigma^3(r)}{4 \ln \Lambda G^2 (2\pi)^{1/2} M_{BSS} \rho(r)} = t_{AGE}$$

where:

 M_{BSS} = 1.2 Msol t_{AGE} = 12 Gyr $\rho(r)$, $\sigma(r)$ from best-fit King model of the observed density profile

Radius of avoidance

Conclusions

(1) BSS radial distribution crucial probe of cluster dynamics:

- central peak: COL-BSS & MT-BSS
- external portion: MT-BSS
- position of the minimum: tracer of dynamical friction efficiency
- flat distribution: lack of mass segregation (even in the core)

(2) quantitative details still need to be fully understood

- increase statistics & compare to cluster properties
- compare to open clusters & dwarf galaxies
- determine radial distribution of binary systems (quite challenging...)
- run realistic N-body simulations (collision rate, binary shrinking, r_{avoid})

Visit our web-site: www.cosmic-lab.eu

