

Searching for intermediate-mass black holes in Galactic globular clusters

BARBARA LANZONI

Physics & Astronomy Department – University of Bologna

(Italy)

+5-year project (web site at www.cosmic-lab.eu)

- Advanced Research Grant funded by the European Research Council (ERC)
- PI: Francesco R. Ferraro (Dip. of Physics & Astronomy Bologna University)
- AIM: to understand the complex interplay between dynamics & stellar evolution
- + HOW: using **globular clusters** as cosmic laboratories and

Blue Straggler Stars
Millisecond Pulsars
Intermediate-mass Black Holes

Intermediate-mass Black Holes (IMBHs)

IMBHs: why interesting?

- 1. can probe a new BH mass range, between stellar-BHs and SMBHs
- 2. could be the seeds SMBHs
- **3. could explain the origin of ultraluminous X-ray sources** (ULX: L_X>10⁴⁰ erg/s) detected in nearby galaxies
- 4. could allow to finally detect gravitational waves
- **5.** may have a crucial role in the dynamical evolution & stability of GCs (affecting the density and velocity dispersion profiles, the degree

of mass segregation, UV-bright pop, position of MSPs

... but do they exist ??

IMBHs: they are expected (especially in GCs)

- **1. Extrapolation of the "Magorrian relation"** ($M_{BH} M_{gal}$) to GC scales
- 2. Several plausible formation scenarios (Giersz's talk):
 - evolution of first stars (**Pop III**) with masses > 250 M_☉ (e.g., Fryer et al. 2001; Madau & Rees 2001)
 - repeated merging of stellar-mass BHs (Miller & Hamilton 2002)
 - accretion of interstellar gas onto stellar-mass BHs (Kawakatu & Umemura 2005": Leigh et a. 2013)
 - (some) GCs may be remnant **nuclei of disrupted dwarfs** with possible IMBHs (e.g., Freeman 1993; Greene & Ho 2004)
 - runaway collisions of massive (50-120 M_☉) MS stars in the core of high-density clusters in their early stages of evolution
 (e.g. Portegies Zwart +04; Gurkan et al. 2004; Freitag +07)
 - new MOCCA scenario

IMBHs: several fingerprints in GCs predicted

(Baumgardt et al. 2005; Miocchi 2007; Heggie et al. 2007; Trenti et al. 2007, 2010; Dukier & Bailyn 2003; Maccarone 2004, 2007; Gill et al. 2008; Vesperini & Trenti 2010; Noyola & Baumgardt 2011; Umbreit & Rasio 2013; ...)

- 1) shallow density cusp at the very centre
- 2) steep inner cusp in the velocity dispersion profile
- 4) a few stars accelerated to very high-velocities (even v ~ 100 km/s)
- 3) universal, large core to half-mass radii ratios (r_c/r_h >0.1)
- 5) quenching of mass segregation
- 6) X-ray and radio emission

IMBHs:

- have deep implications in many fields of the Astrophysics and Physics research
- are expected to exist (especially in GCs)
- several predicted fingerprints

... however NO solid detection yet!

Why?

- challenging observations (sub-arcsec BH sphere of influence)
- uncertainties on expected X-ray and radio emission
- controversial theoretical predictions (e.g., density cusp \rightarrow Vesperini & Trenti 2010)
- controversial observational results...

Many suggestions of IMBHs (... or central mass concentration) in GCs:

(Gebhardt+2005; Miller-Jones+2012; Gebhardt+1997; van der Marel+2002, 2010; Gerssen +2002;den Brok+14; Miller-Jones+2012; , Kirsten+2012, 2014; Ibata+2009; Wrobel+2011; Noyola +2008, 2010; Jalali+2011; Lutzgendorf+2011, 2012; Feldmeier+2013; Maccarone+2008; Bash +2008; Strader+2012, Miller Jones+2013;

.....)

G1 in M31 M15 47 Tuc ω Cen M54 NGC1904 NGC 6266 NGC 1851 NGC 2808 NGC 5286 NGC 5286 NGC 55824 NGC 5824	 However: in all cases, just a few-sigma significance in all cases, different fingerprints brought to different results in at least one case, the same fingerprint brought to different results

- one of the most massive Galactic GCs: M ~ 2.6 $10^6 M_{\odot}$
- metal-rich: [Fe/H]=-0.44 (Carretta et al. 2007)
- HB with extended blue tail (Rich et al. 1997)
- multiple populations (Bellini et al. 2013)

Photometric data set

Determination of the centre

Determination of the centre

deviation from a King profile at r < 1"

self-consistent, multi-mass, spherical, isotropic, King models with central BH (from Miocchi 2007) \rightarrow M_{BH} \sim 6 10³ M_☉

(Lanzoni et al. 2007)

• X-ray and radio observations: M_{BH} < 600 M_☉

(Nucita et al. 2008, 2013; Cseh et al. 2010; Bozzo et al. 2011)

Velocity dispersion from integrated light spectroscopy

ARGUS (non-AO assisted IFU@VLT)

Velocity dispersion from integrated light spectroscopy

Normalized Flux

- exclude spaxels dominated by the light of individual bright stars (white asterisks: shot noise correction)
- combine spectra from all remaining spaxels in each radial bin
- measure the broadening of spectral lines

- Velocity dispersion from integrated light spectroscopy
- cuspy velocity dispersion profile, σ_0 ~23-25 km/s

(from the line broadening of integrated-light spectra)

- IMBH of ~1.7 $10^4~M_{\odot}$

(from spherical Jeans models with constant M/L)

Velocity dispersion from radial velocity of individual stars

SINFONI (AO assisted IFU@VLT)

R=4000, K-band grating (1.95-2.45 µm), spatial resolution=0.1", FoV=3.2"x3.2"

ARGUS RECONSTRUCTED

(Lanzoni et al. 2013)

SINFONI (central) sample

- cross-correlation between SINFONI and HST/HRC
- spectrum extracted from central spaxel only
- excluded low-quality spectra & blended sources
- \bullet Vr mainly from CO band-heads

CO

Template

SINFONI (central) sample

CO

- cross-correlation between SINFONI and HST/HRC
- spectrum extracted from central spaxel only
- excluded low-quality spectra & blended sources
- \bullet Vr mainly from CO band-heads

www.cosmic-lab.eu

CO

Template

MMMMN

FLAMES (external) sample

• ESO-VLT/FLAMES-GIRAFFE in MEDUSA mode:

multi-object spectrograph (132 fibres), high spectral resolution (R>10,000), optical (Ca triplet, Fe, ..), FoV of 25' in diameter

Programs: 381.D-0329(B), PI: Lanzoni 073.D-0211; PI: Carretta 073.D-0760; PI: Catelan

V_r & [Fe/H] for 508 stars

FLAMES (external) sample

Velocity dispersion profile

Velocity dispersion profile

Insufficient shot-noise correction

Many suggestions of IMBHs (... or central mass concentration) in GCs:

(Gebhardt+2005; Miller-Jones+2012; Gebhardt+1997; van der Marel+2002, 2010; Gerssen +2002;den Brok+14; Miller-Jones+2012; , Kirsten+2012, 2014; Ibata+2009; Wrobel+2011; Noyola +2008, 2010; Jalali+2011; Lutzgendorf+2011, 2012; Feldmeier+2013; Maccarone+2008; Bash +2008; Strader+2012, Miller Jones+2013;

A NEW GENERATION OF GC VELOCITY DISPERSION PROFILES FROM THE RADIAL VELOCITY OF INDIVIDUAL STARS, WITH THE ESO-VLT

Comparison with models: IMBH mass

(1) self-consistent, isotropic, spherical **King & Wilson models** with **central BH** (included via the phase-space distribution function of Bahcall & Wolf 1976; Miocchi 07)

Comparison with models: IMBH mass

(2) solution of the spherical Jeans equation with density given by the observed one plus a variable central point mass (as in L11)

NO BH (or M_{BH} of ~ 2 10³ M_{\odot} at most)

Conclusions

- searching for IMBHs in GCs important and intriguing
- many uncertainties (both theoretical and observational)
- quite challenging from the observational point of view
- many claims could be premature
- finding several fingerprints in the same cluster could be the only way?
- details of modelling do matter

... let's keep on searching....

You can download this presentation at our web site: http://www.cosmic-lab.eu/Cosmic-Lab/Presentations.html

> Thank you for your attention