

IMBHs (& velocity dispersion profiles) in Galactic globular clusters through radial velocities of individual stars

BARBARA LANZONI

Physics & Astronomy Department – University of Bologna

(Italy)

- ✤ 5-year project
- Advanced Research Grant funded by the European Research Council (ERC)
- PI: Francesco R. Ferraro (Dip. of Physics & Astronomy Bologna University)
- AIM: to understand the complex interplay between dynamics & stellar evolution
- + HOW: using **globular clusters** as cosmic laboratories and

Blue Straggler Stars Millisecond Pulsars Intermediate-mass Black Holes

as probe-particles

IMBHs (10³-10⁴ M_{\odot}): why interesting?

- could be the seeds of SMBHs
 → galaxy formation & co-evolution with AGN
- could be at the origin of ultra-luminous X-ray sources (ULX)
- would be important **gravitational waves emitters** detectable by the next generation detectors
- expected in dense stellar systems, affecting their dynamical evolution

IMBHs in GCs: several fingerprints predicted

(Baumgardt et al. 2005; Miocchi 2007; Heggie et al. 2007; Trenti et al. 2007, 2010; Dukier & Bailyn 2003; Maccarone 2004, 2007; Gill et al. 2008; Vesperini & Trenti 2010; Noyola & Baumgardt 2011; Umbreit & Rasio 2013; ...)

- 1) shallow density cusp at the very centre
- 2) steep inner cusp (r < 1"-2") in the velocity dispersion profile
- 3) a few stars accelerated to very high-velocities (even ~100 km/s)
- 4) universal, large core to half-mass radii ratios (r_c/r_h >0.1)
- 5) quenching of mass segregation
- 6) X-ray and radio emission

How to measure velocity dispersion (VD) in Galactic GCs?

Two main differences wrt distant (unresolved) galaxies/stellar systems

1) no gas => only stellar velocity dispersion

2) close to Earth => stars are resolved

integrated-light spectra (*l.o.s.* VD)
 Doppler broadening of spectral lines

Proper motions

- ✓ 2 VD components => also orbital anisotropy information
- ✓ VD for different stellar mass
- **x** still miss the very central regions (stellar crowding)

How to measure velocity dispersion (VD) in Galactic GCs?

Two main differences wrt distant (unresolved) galaxies/stellar systems

1) no gas => only stellar velocity dispersion

2) close to Earth => stars are resolved

proper motions (2 VD components: x, y) ______ still miss central regions

individual radial velocities (*l.o.s.* VD)

integrated-light spectra (*l.o.s.* VD)

prone to bias from few bright giants (Bianchini talk)

How to measure velocity dispersion (VD) in Galactic GCs?

Two main differences wrt distant (unresolved) galaxies/stellar systems

A NEW GENERATION OF VELOCITY DISPERSION & ROTATION PROFILES FROM THE RADIAL VELOCITY OF INDIVIDUAL STARS WITH A MULTI-INSTRUMENT APPROACH

AO-assisted IFU, 0.1" spatial resolution, FoV=3.2"x3.2", mid-spectral resolution (R=4000), K-band grating (1.95-2.45 μm), CO band-heads

SINFONI

24 deployable IFUs, FoV=3"x3" each,

KMOS

mid-spectral resolution (R=3400), YJ-band grating (1.00-1.35 μm), atomic lines (Til, MgI, Fel,..)

FLAMES GIRAFFE/MEDUSA: multi-object spectrograph (132 fibres), 25' FoV high spectral resolution (R>10,000), optical band (Ca triplet, Fe, MgI,...),

+ ESO Large Programme 193.D-0232 (PI: Ferraro):

194 hoursKMOS + FLAMES30 Milky Way GCs2/3 acquired and 1/3 partially analyzed

+ ESO Large Programme 195.D-0750 (PI: Ferraro):

145 hoursSINFONI19 high-density Milky Way GCsstarting next April

+ a few additional/pilot programmes (also @Keck)

NGC 6388

- one of the most massive GGCs: $M \sim 2.6 \ 10^6 \ M_{\odot}$
- highly concentrated ($r_c=7$ ", $\rho_0 = 2.3 \times 10^5 L_{\odot}/pc^3$)

Velocity dispersion from radial velocity of individual stars

(Lanzoni et al. 2013 + Lapenna et al. 2014)

SINFONI (AO assisted IFU): r< 2"

- ~ 2h exposure on target
- ~ 30% Strehl ratio

KMOS (multi-object: 24 IFUs): 9"<r<70"

4 pointings 1.5 h (SV run)

FLAMES (multi-object: 132 fibers): 60"<r<600"

proprietary + archive data ~500 stars in total

SINFONI (AO assisted IFU)→ center

- stellar centroids from cross-correlation between SINFONI and HST/HRC
- spectra extracted from central spaxel only
- excluded low-quality spectra & blended sources

SINFONI (AO assisted IFU)→ center

• V_r from CO band-heads

SINFONI (AO assisted IFU)→ center

KMOS (multi-objects: 24 IFUs)→ intermediate regions

KMOS (multi-objects: 24 IFUs)→ intermediate regions

• Vr from several atomic lines 1 0.8 B-RGB wavelength calibration 0.6 F-RGB refined with telluric lines 0.4 full spectra 0.2 1.1 1.2 1.3 normalized flux 1 0.8 **B-RGB** 0.6 F-RGB 0.4 telluric spectra 0.2 \rightarrow V_r for 82 1.145 1.15 1.16 1.155 individual stars TiI Mg MgI Fel 1 0.8 B-RGB at 9"<r<70" 0.6 F-RGB 0.4 star spectra 0.2 Ь 1.19 1.2 1.06 1.07 1.21 wavelength [micron]

FLAMES (multi-objects: 132 fibers)→ external regions

Velocity dispersion profile

$\sigma(r)$ from the dispersion of V_r in radial bins of \geq 50 stars

(following the Maximum Likelihood method of Walker et al. 2006)

Velocity dispersion profile

Insufficient masking in integrated-light spectra (ARGUS: seeing-limited IFU)

Insufficient masking in integrated-light spectra (ARGUS: seeing-limited IFU)

Spectra dominated by the light of <u>a few</u> bright stars with quite <u>different V_r</u>

 \Rightarrow <u>artificial</u> line broadening

⇒ overestimate of σ(r)& IMBH mass

Preliminary results for NGC 2808

- + SINFONI (innermost region): ~ 700 stars, at 0.5"<r<12" (7 fields of 8"x8" each)
- + KMOS (intermediate region): ~ 96 stars, mainly at 12"<r<40"
- + FLAMES (external regions): ~ 790 stars, mainly at 40"<r<700"

Preliminary results for NGC 2808

Cosmic-Lab

+ NGC 2808 much looser than NGC 6388

	core radius	ρ ₀ [L _☉ /pc³]
NGC 2808	15″	0.5 x 10 ⁵
NGC 6388	7"	2.3 x 10 ⁵

+ more appropriate masking of bright stars?

better seeing conditions for NGC 2808
 (FWHM=0.8", FWHM=0.9" for NGC 6388, ... & very different PSF wings?)

(Lützgendorf et al. 2011, 2012)

HST AMAGE

NGC 6388 ARGUS RECONSTRUCTED

VELOCÍTY MAP

Integrated-light spectroscopy in Galactic GCs (resolved SP)

Masking procedures (properly taking into account the PSF wings) are mandatory

Additional effects:

- cluster density (core radius)
- cluster central luminosity density
- (stochastic) presence of bright stars (and their velocity)

	core radius	ρ₀ [L _☉ /pc³]	
NGC 2808	15"	0.5 x 10⁵	
NGC 6388	7"	2.3 x 10 ⁵	
Bianchini simulated GC	27″		
	not comparable t (how much mask	not comparable to NGC 6388 or NGC 2808 (how much masking needed for denser GCs)	

Preliminary results from KMOS+FLAMES LP

Cosmic-Lab

Thank you for your attention

BARBARA LANZONI

Physics & Astronomy Department – University of Bologna (Italy)

