

A critical look at Globular Cluster Formation Theories: Constraints from Young Massive Clusters

Terzan 5: a pristine fragment of the Galactic bulge?

DAVIDE MASSARI

Dipartimento di Fisica e Astronomia – Università di Bologna

Supervisors and collaborators:

Francesco R. Ferraro, Barbara Lanzoni, Emanuele Dalessandro, Alessio Mucciarelli, Livia Origlia, R. Michael Rich

General context: formation of galaxy bulges

Still disputed topic, several models:

- monolithic collapse (e.g. Eggen+62)
- evolution of bars (e.g. Combes & Sanders 1981)
- mergers (e.g. Toomre & Toomre 1972)
- disk instability (e.g. Immeli+04, Carollo+07)

Instability of a GAS disk:

- the disk could fragment in massive clumps of gas and stars
- they spiral to the center and merge forming a bulge
- mergers (e.g. Toomre & Toomre 1972)
- high SFR in the clumps and the bulge ---> fast iron and α -elements enrichment

General context: formation of galaxy bulges

Possible observational evidence: chain and clumpy galaxies (Cowie+95, Elmegreen+05,08, Adamo+13)

The best constraints from the Galactic bulge

Terzan 5

Massari et al. 2012, ApJL, 755, L32

IR observations with MAD@VLT

33 targets observed with NIRSPEC@Keck II (Ferraro+09, Origlia+2011)

[Fe/H]=-0.25±0.07 [Fe/H]=+0.27±0.04

33 targets observed with NIRSPEC@Keck II (Ferraro+09, Origlia+2011)

- Metal-rich component more centrally concentrated than the metal-poor one: strong hint of SELF-ENRICHMENT

- Initial mass of Terzan 5 much larger than the current one!

[Fe/H]=-0.25±0.07 [Fe/H]=+0.27±0.04

33 targets observed with NIRSPEC@Keck II (Ferraro+09, Origlia+2011)

33 targets observed with NIRSPEC@Keck II (Ferraro+09, Origlia+2011)

www.cosmic-lab.eu

33 targets observed with NIRSPEC@Keck II (Ferraro+09, Origlia+2011)

NO GENUINE GC!

α-elements

 $[Fe/H] = -0.25 \pm 0.07$ $[\alpha/Fe] = 0.34 \pm 0.06$ $[Fe/H] = +0.27 \pm 0.04$ [α/Fe] = 0.03 ± 0.04

- Chemistry quite different from that observed in the Halo and in the Disk

α-elements

 $[Fe/H] = -0.25 \pm 0.07$ $[\alpha/Fe] = 0.34 \pm 0.06$ $[Fe/H] = +0.27 \pm 0.04$ [α/Fe] = 0.03 ± 0.04

- Chemistry quite different from that observed in the Halo and in the Disk

- Striking similarity with the chemistry observed for Bulge stars!

The true nature of Terzan 5

- Not a genuine GC
- Large initial mass to retain the gas enriched by Sne
- Located in the inner Bulge
- Ter5 and the Bulge share similar chemical evolutionary histories

Could it be the relic of one of the Bulge pristine fragments?

Enlarging the sample

With the aim of studying the kinematics of Terzan 5, we obtained spectra for more than 1600 targets.

For a sub-sample of these we also obtained iron abundance measurements.

Ter5-members metallicity distribution

33 NIRSPEC + 170 FLAMES + 54 DEIMOS = 257 stars

Cluster members according to radial velocities

Ter5-members metallicity distribution

Ter5-members metallicity distribution

 Dominant one at [Fe/H]~-0.3 dex Secondary at [Fe/H]~+0.3 dex

Confirm previous findings by Origlia+11 at higher resolution

- Bimodality: two main bursts of star formation, possibly separated in age (few Gyr)
- Third, minor metal poor peak at [Fe/H]~-0.8 It accounts for the 6% of the sample

Follow-up with NIRSPEC for 3 of these stars (Origlia et al. 2013)

Massari et al. 2014b, submitted

Interestingly, a small (5%) VMP component was also found in ω -Cen! (Pancino et al. 2010)

Terzan 5 vs. ω-Cen

Similarities

- (see Johnson&Pilachowski 2010, Marino+11, Villanova+14)
- Δ [Fe/H]>1.5 dex
- Multi-modal metallicity distributions
- Small (few %) MP components: first born populations of the two systems?

Differences

- Higher metallicity regime: [Fe/H]_{Ter5} >> [Fe/H]_{ω-Cen}
- Locations: Bulge vs Halo
- Chemical link with the environment: Terzan 5 shares strikingly similar chemical properties with the Bulge

Terzan 5 vs. ω-Cen

Similarities

(see Johnson&Pilachowski 2010, Marino+11, Villanova+14)

Differences

- Higher metallicity regime: [Fe/H]Ter5 >> [Fe/H]ω-Cen
- Locations: Bulge vs Halo
- Chemical link with the environment: Terzan 5 shares strikingly similar chemical properties with the Bulge

Terzan 5 vs. ω-Cen

Similarities

- (see Johnson&Pilachowski 2010, Marino+11, Villanova+14)
- Δ [Fe/H]>1.5 dex
- Multi-modal metallicity distributions
- Small (few %) MP components: first born populations of the two systems?

Differences

- Higher metallicity regime: [Fe/H]_{Ter5} >> [Fe/H]_{ω-Cen}
- Locations: Bulge vs Halo
- Chemical link with the environment: Terzan 5 shares strikingly similar chemical properties with the Bulge

Terzan5 ≠ **ω**-Cen

Conclusions

Chemical properties of Terzan 5:

- **No genuine GC** (Δ [Fe/H]>1.5 dex)
- No remnant of a dwarf galaxy (chemistry not compatible)
- Striking similarity with the Bulge

Future perspective

- Kinematics: radial velocities and proper motions
- Ages: determine absolute ages of Terzan 5 populations

- Search for Terzan 5-twins among other bulge GCs

Evolution of Terzan 5 and possibly of its environment

Visit our web-site: www.cosmic-lab.eu

The End

The curious case of Terzan 5

- We need to reconstruct the star formation history of Terzan 5 by measuring the ages of the two populations
- Info on the RCs luminosity is not sufficient (the split can be explained with proper combinations of age and helium differences, see D'Antona et al. 2010)
- We need the information on the two Turn Off luminosities

The curious case of Terzan 5

- We need to reconstruct the star formation history of Terzan 5 by measuring the ages of the two populations
- Info on the RCs luminosity is not sufficient (the split can be explained with proper combinations of age and helium differences)
- We need the information on the two Turn Off luminosities

Formation and evolution of the Bulge – state of the art

The most recent spectroscopic and photometric surveys (Brown et al. 2010, Hill et al. 2011, Rich et al. 2012, Bensby et al. 2012): more and better data → Posing new questions rather than providing answers!

• Age

The bulk is old (> 10 Gyr). A few Gyr younger component (few-10 %?) The youngest pop. < 1 Gyr confined in the central ~100 pc

Metallicity/Chemical composition

The MDF peaks around solar, a long tail down to [Fe/H] \sim -1.6 and a super solar component [α /Fe]>0 enhancement at least up to solar [Fe/H]

Kinematics

Complex structure, with evidence of bar(s) and rotation

• Main open issue: formation scenario(s)

Early and fast formation via dissipative collapse or dry merging of early [proto]-fragments or early evaporation from a proto-disk

 α -elements

Terzan 5

Catalogued as a GC (Terzan, 1968)

Two great peculiarities:

1) Largest number of **MSPs** (35 up-to-date, Ransom+05)

2) Highest value of the **collisional parameter**

Bulge field surrounding Terzan 5

