Spurious and real iron spreads in globular clusters ALESSIO MUCCIARELLI Physics & Astronomy Department - University of Bologna (Italy) Cosmic-Lab

Star Clusters as Cosmic Laboratories for Astrophysics, Dynamics and Fundamental Physics - MODEST 16 April 18-22 2016, Bologna (Italy)

An iron roadmap for the globular clusters

Anomalous GCs

Important for the missing satellites problem

A new (but simple) method to check the iron spreads

The lesson from AGB stars (see Lapenna's talk)

- In AGB stars Fe I lines provide systematically lower abundance with respect to RGB stars
- In AGB stars Fe II lines + photometric logg provide the correct abundance
- Spectroscopic logg for AGB stars lead incorrect abundances

WARNING !!!

Several works use the spectroscopic gravities, including those about the clusters with Fe spread

An iron spread should be detected both with photometric and spectroscopic logg

The case of NGC3201

<u>Simmerer+13</u>: analysis of 21 giant stars (FLAMES-UVES) A 0.4 dex wide metallicity distribution (Analysis based on spectroscopic logg)

The case of NGC3201

<u>Simmerer+13</u>: analysis of 21 giant stars (FLAMES-UVES) A 0.4 dex wide metallicity distribution (Analysis based on spectroscopic logg)

The case of M22

The case of M22

The case of M22 When we use photometric logg and Fe II lines M22 is mono-metallic

Spectroscopic logg

Photometric logg

Why FeII + photometric logg?

Fe II lines are most trustworthy than Fe I lines:

(1) Fe II is a dominant species in the atmospheres of late-type stars

(2) Fe II lines are unaffected by NLTE

We can use the stellar masses from spectroscopic logg to check the gravities

Masses from spectroscopic gravities

Masses from spectroscopic gravities

The case of NGC5286

Marino+15: spread in [Fe/H] by using spectroscopic logg spread in s-process

Spectroscopic logg

Photometric logg

Two cases where the iron spread are spurious

(1) Normal GCs (no s- and C+N+O anomalies)

AGB stars & spectroscopic logg

NGC 3201

For these GCs use the logg that you prefer for RGB stars but photometric logg + FeII for AGB stars

(2) GCs with anomalies in s- and C+N+O

AGB + RGB stars & spectroscopic logg

M22, NGC 5286

For these GCs use photometric logg + FeII

Summary

- A simple method to check Fe spreads: Fe II lines + photometric logg
- With this approach NGC3201, M22 and NGC5286 turn out to be mono-metallic
- The anomalous GCs are genuine GCs (concerning Fe) !!!

