Searching in the dark: the dark mass content of globular clusters

Antonio Sollima

Cosmic-Lab

University of Bologna INAF osservatorio Astronomico di Bologna

antonio.sollima@oabo.inaf.it

Collaborators: F. R. Ferraro, L. Lovisi, B. Lanzoni, E. Dalessandro, A. Mucciarelli, C. Pallanca, E. Lapenna (UniBo), F. Contenta (Univ. Surrey), E. Vesperini (Indiana Univ.), L. Origlia (OaBO)

M-L relation for pressure-supported stellar systems

Models of GC formations

- GCs may form in collapsing DM-free clouds (Peebles & Dicke 1968)
- ...or from gas cooling within a relatively small DM halo (Peebles (1984)

Models of GC formations

- GCs may form in collapsing DM-free clouds (Peebles & Dicke 1968)
- ...or from gas cooling within a relatively small DM halo (Peebles (1984)

Most of the DM is expected to be stripped by the tidal interaction with the Milky Way

- Temptative evidence of DM in GCs has been claimed in NGC 5128
- But M/L depend on many parameters (MF, remnant fraction, age, [Fe/H], tides, binaries, etc.) which cannot be deduced from integrated light

Cosmic-Lab

Dark remnants

During cluster evolution massive stars leave a dark remnant (WD, NS, BH)

- NS are promptly ejected after formation by natal kicks
- BH are quickly removed by "Spitzer instability"
- Low-mass MS stars progressively evaporate because of tidal interaction with the host galaxy

Dark remnants

During cluster evolution massive stars leave a dark remnant (WD, NS, BH)

Previous works

After a boost of interest in the '90...

cluster	reference	f _{dark}
NGC6397	Meylan & Mayor (1991) Heggie & Hut (1996)	22-30% 53%
M13	Leonard et al. (1992)	46%
M107	Piatek et al. (1994)	61-80%
47Tuc	Meylan (1989) Heggie & Hut (1996)	16-23% <70%

INCOMPLETE!!

Large uncertainties because of the lack of information on the low-mass end of the MF and small RV dataset

... the attention recently moved to IMBHs

Noyola et al. (2010), Anderson & van der Marel (2010), Lützgendorf et al. (2013), Lanzoni et al. (2013), Kamann et al. (2014)... But their masses depend on the amount and distribution of remnants

Estimate of the dark mass fraction

Simultaneous fit of LF and σ_{LOS} profile with multimass King-Michie models

No agreement assuming 25%<f_{remn}<40% Dynamical masses are ≈40% larger than luminous ones

BUT

Results depend on the reliability of the adopted model

No information about the distribution of dark mass

Non-parametric estimate of the luminous mass

Luminous mass can be estimated in a straightforward way by using deep highresolution photometry

to each star a mass, a completness factor and a binary probability is associated

Cosmic-Lab

Non-parametric estimate of the total mass

Dynamical mass can be estimated using kinematics as tracers

Estimate of the dark mass fraction

Dynamical mass can be estimated using by solving the Jeans equation

$$M(r) = \frac{r^2}{G} \left(\frac{\sigma^2}{\rho} \frac{d\rho}{dr} + \frac{d\sigma^2}{dr} + 2\beta \frac{\sigma^2}{r} \right)$$

Cosmic-Lab

WARNING!

Noise enhanced in derivatives

 ρ and σ^2 profiles are interpolated with a multi-gaussian expansion using a controlled MCMC scheme

$$\rho = \sum_{i=1}^{M} \mu_i e^{-\frac{r^2}{2s_i^2}} \qquad \qquad \sigma^2 = \sum_{i=1}^{M} \xi_i e^{-\frac{r^2}{2s_i^2}}$$

Estimate of the dark mass fraction

Dynamical mass can be estimated using by solving the Jeans equation

$$M(r) = \frac{r^2}{G} \left(\frac{\sigma^2}{\rho} \frac{d\rho}{dr} + \frac{d\sigma^2}{dr} + 2\beta \frac{\sigma^2}{r} \right)$$

WARNING!

Could lead to unphysical solutions

At each step the DF is calculated using the Eddington formula

$$f(E) = \frac{1}{2\sqrt{2}\pi^2} \left[\int_0^E \frac{d^2\rho}{d\psi^2} \frac{d\psi}{\sqrt{E-\psi}} + \frac{1}{\sqrt{E}} \left(\frac{d\varrho}{d\psi} \right)_0 \right]$$

Only the domain of physically meaningful solutions (f(E)>0) is surveyed

Results

Sollima et al. (in prep.)

More than 60% of the mass in both clusters is dark

Dark mass is more concentrated than any other group of stars

Results

Sollima et al. (in prep.)

More than 60% of the mass in both clusters is dark

Dark mass is more concentrated than any other group of stars

Spurious effects: anisotropy

Some degree of anisotropy affect the mass estimate

$$M(r) = \frac{r^2}{G} \left(\frac{\sigma^2}{\rho} \frac{d\rho}{dr} + \frac{d\sigma^2}{dr} + 2\beta \frac{\sigma^2}{r} \right) \qquad \qquad \beta(r) = \pm \frac{r^2}{r^2 + r_a^2}$$

Spurious effects: anisotropy

Some degree of anisotropy affect the mass estimate

$$M(r) = \frac{r^2}{G} \left(\frac{\sigma^2}{\rho} \frac{d\rho}{dr} + \frac{d\sigma^2}{dr} + 2\beta \frac{\sigma^2}{r} \right)$$

$$\beta(r) = \pm \frac{r^2}{r^2 + r_a^2}$$

Spurious effects: rotation

The adopted formulation of the Jeans equation is valid only for spherical non-rotating systems

No significant rotation in both clusters

Sollima et al. (in prep.)

Spurious effects: binaries

A significant binary fraction can spuriously inflate the velocity dispersion

Cosmic-Lab

Only stars with multiple RV measurements and P_{bin}<1%

No appreciable variation in binary-free sample

Sollima et al. (in prep.)

Spurious effects: tidal heating

Interaction with the Milky Way tidal field can spuriously inflate the velocity dispersion

Sollima et al. (in prep.)

Comparison with N-body simulations

The remnant fraction and distribution is reproduced by some N-body simulations

BUT

Simulations are not tailored on real GCs

Comparison with N-body simulations

The remnant fraction and distribution is reproduced by some N-body simulations

BUT

Simulations are not tailored on real GCs

www.cosmic-lab.eu

Contenta et al. (2015)

IMBH?

The same result can be obtained assuming a single IMBH in the cluster center

Sollima et al. (in prep.)

IMBH?

The same result can be obtained assuming a single IMBH in the cluster center

Sollima et al. (in prep.)

- More than 60% of the mass within the innermost region of NGC288 and NGC6218 is dark
- The dark mass is more concentrated than any other group of stars suggesting to be constituted by dark remnants
- A large fraction of dark remnants is expected in those clusters subject to strong mass-loss (strong tides, efficient two-body relaxation)
- The detection of IMBH signature is hampered by the uncertainties on the fraction and distribution of dark remnants

Next steps:

- . Extend the survey to GCs with different orbits and ${\sf t}_{\sf rh}$
- Run N-body simulations calibrated on the observed GCs

